1	Running title: Thioredoxin h^2 with both dehydroascorbate
2	reductase and monodehydroascorbate reductase activities
3	
4	Title of article:
5	Sweet potato storage root thioredoxin h with both
6	dehydroascorbate reductase and monodehydroascorbate
7	reductase activities
8	
9	Authors' name and address:
10	Guan-Jhong HUANG ¹ , Hsien-Jung CHEN ² , Yuan-Shiun CHANG ¹ , Ming-Jyh SHEU ³ and
11	Yaw-Huei LIN ⁴
12	¹ Institute of Chinese Pharmaceutical Sciences, China Medical University, Taichung
13	404, Taiwan;
14	² Department of Horticulture, Chinese Culture University, Taipei 111, Taiwan;
15	³ Department of Physiology, School of Medicine, China Medical University, Taichung
16	404, Taiwan;
17	⁴ Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115,
18	Taiwan;
19	

20 Corresponding author:

- 21 Dr. Yaw-Huei Lin
- 22 Institute of Plant and Microbial Biology, Academia Sinica, Nankang,
- 23 Taipei 11529, Taiwan, ROC
- 24 FAX: 886 (2) 2782-7954; TEL: 886 (2) 2789-9590 ext. 320
- 25 E-mail: <u>boyhlin@gate.sinica.edu.tw</u>

26

27

28 Abstract

29	Recombinant thioredoxin h (Trx $h2$) overproduced in E. coli (M15) was purified
30	by Ni ²⁺ -chelated affinity chromatography as previously reported (Huang et al., 2004a).
31	The molecular mass of Trx $h2$ is ca. 1.4 kDa determined by SDS (sodium dodecyl
32	sulfate)-PAGE (polyacrylamide gel electrophoresis). Trx h2 had antioxidant activity
33	(Huang et al., 2004b). Trx h^2 reduced dehydroascorbate (DHA) in the presence of
34	glutathione to regenerate ascorbate (AsA). However, without glutathione, Trx $h2$ has
35	very low DHA reductase activity. AsA was oxidized by AsA oxidase to generate
36	monodehydroascorbate (MDA) free radicals. MDA was also reduced by Trx $h2$ to
37	AsA in the presence of NADH mimicking the MDA reductase catalyzed reaction.
38	These data suggest that Trx h^2 have both DHA reductase and MDA reductase
39	activities.

41 **Keywords:** Sweet potato storage roots; Thioredoxin *h*; Dehydroascorbate reductase;

42 Monodehydroascorbate reductase;

43

44 INTRODUCTION

45 Ascorbic acid (AsA) plays an important role in protecting plant cells against the 46 action of reactive oxygen species (Dalton et al., 1986; Kobayashi et al., 1995). In 47 plants, peroxide-scavenging was accomplished through the AsA-glutathione pathway, 48 a coupled series of redox reactions involving four enzymes: AsA-specific peroxidase 49 (EC 1.11.1.11), monodehydroascorbate (EC 1.6.5.4), (MDA) reductase 50 dehydroascorbate (DHA) reductase (EC 1.8.5.1), and glutathione reductase (EC 51 1.6.4.2) (Dalton et al., 1993; Leonardis et al., 1995). This pathway has been studied 52 mainly in chloroplasts, in which the possible reactive oxygen species produced by PS 53 I during photosynthesis might cause serious damage. However, the AsA-glutathione 54 pathway has also been found in cytosol (Borraccino et al., 1986; Elia et al., 1992), 55 mitochondria (Lunde et al., 2006), and peroxisomes (Jimenez et al., 1997). When AsA functions as an antioxidant in cells, it is oxidized to MDA free radical, and MDA 56 57 reductase catalyzes the reduction of MDA back to AsA with NAD(P)H (Hossain et al., 58 1984). MDA was a sensitive endogenous index of oxidative stress in leaf tissues 59 (Heber et al., 1996).

60	Thioredoxins, the ubiquitous small proteins with a redox active disulfide bridge,
61	are important regulatory elements in a number of cellular processes (Buchanan, 1991;
62	Vianey-Liaud et al., 1994). They all contain a distinct active site, WCGPC, which is
63	able to reduce disulfide bridges of target proteins. Initially described as hydrogen
64	carriers in ribonucleotide reduction in E. coli, they were found to serve as electron
65	donors in a variety of cellular redox reaction (Holmgren, 1985). From genome
66	sequencing data, a significant diversity of thioredoxin genes containing five different
67	multigenic families (f, m, x, o and h) was observed (Mestres-Ortega and Meyer, 1999;
68	Meyer et al., 2002; Balmer and Buchanan, 2002). The ferredoxin-thioredoxin system
69	(thioredoxins f and m) has been proved to regulate several enzymatic activities
70	associated with photosynthetic CO_2 assimilation in chloroplasts. Thioredoxin x
71	contains a transit peptide similar to those required for chloroplast and mitochondria
72	targeting; however, its function is not clearly defined (Mestres-Ortega and Meyer,
73	1999). A new type of plant mitochondrial thioredoxin o was also shown to regulate the
74	activities of several mitochondrial proteins by disulfide bond reduction (Laloi et al.,
75	2001).
76	Thioredoxin h is generally assumed to be cytosolic, which was supported by the

absence of a transit peptide in the genes cloned for the isoforms from tobacco (Marty
and Meyer, 2001; Brugidou et al., 1993), *Arabidopsis* (Rivera-Madrid et al., 1993;

79	1995), Triticum aestivum (Gautier et al., 1998), germinating wheat seeds (Serrato etal.,
80	2001) and barley seed proteome (Kenji et al., 2003). Moreover, the existence of
81	several forms of thioredoxin h detected in spinach leaves (Florencio et al., 1988), and
82	wheat flour (Johnson et al., 1987) supports the view that higher plants possess
83	multiple and divergent thioredoxin genes (Rivera-Madrid et al., 1995). In this study,
84	we present evidence to show that the recombination protein, thioredoxin h^2 exhibit
85	both DHA reductase and MDA reductase activities.

87 MATERIALS AND METHODS

88 Chemicals

89	Ascorbic acid, dehydroascorbic acid, electrophoresis grade acrylamide and Bis
90	(N,N'-methylenediacrylamide), TEMED (N,N,N',N'-tetramethylenediamine) and APS
91	(ammonium persulfate) were from E. Merck Inc. (Germany). Other chemicals and
92	solvents were purchased from Sigma Chemical Company (St. Louis, MO). The low
93	molecular weight kits for electrophoresis were obtained from Pharmacia (Uppsala,
94	Sweden).

95

96 Expression of thioredoxin *h2* in *E. coli*

97	Thioredoxin $h2$ (Gene Bank accession number: AY344228; Trx $h2$) was expressed
98	in E. coli. The coding sequence was amplified from Trx h2 cDNA using an
99	oligonucleotide (5 ⁻ -GAG A <u>GG ATC C</u> AA TGG GAG GGG CT-3 ⁻), with a <i>BamH</i> I
100	site (underlined) at the putative initial Met redisue, and an oligonucleotide (5 ⁻ ATT
101	TG <u>A AGC TT</u> G ATT GAT GCT -3 [°]), with a <i>Hind</i> III site at the 3 [°] end. The PCR
102	fragment was subcloned in pGEM T-easy vector. And the plasmid was then digested
103	with BamH I and Hind III and subcloned in pQE32 expression vector (QIAexpress
104	expression system, Qiagen). The resulting plasmid, termed pQE-Trx $h2$, was
105	introduced into E. coli (M15). Cultures of the transformed E. coli (M15)
106	overexpressed a protein of the expected molecular mass, which was purified by
107	affinity chromatography in Ni-NTA columns (Qiagen), according to the manufacturer
108	s instructions.

110 **DHA reductase activity assay**

111 The DHA reductase activity of Trx h^2 was assayed according to the method of 112 Trümper et al. (Tru["]mper et al., 1994) with some modifications. Ten milligrams DHA 113 were dissolved in 5.0 ml of 100 mM phosphate buffer with two pH values (pH 6.0 and 114 7.0). The reaction was carried out at 30°C by adding 100 µL Trx h^2 solution (100 µg 115 protein) to 0.9 ml DHA solution with or without 4 mM glutathione. The increase of

116	absorbance at 265 nm was recorded for 5 min. Non-enzymatic reduction of DHA in
117	phosphate buffer was measured in a separate cuvette at the same time. A standard
118	curve was plotted using 0.1– 50 nmol AsA.

120 MDA reductase activity assay

121	The MDA reductase activity of Trx h^2 was assayed according to Hossain et al.
122	(Hossain et al., 1984) by following the decrease in absorbance at 340 nm due to
123	NADH oxidation. MDA free radicals were generated by AsA oxidase (EC 1.10.3.3) in
124	the assay system (Yamazaki and Pette, 1961). The reaction mixtures contained 50
125	mM phosphate buffer (pH 6.0 and 7.0, respectively), 0.33 mM NADH, 3 mM AsA,
126	AsA oxidase (0.9 U), and 200 μ L Trx h2 solution (200 μ g protein) in a final volume
127	of 1 ml. Trx h^2 solution was replaced with glutathione for controls.

128

129 Protein stainings of thioredoxin *h2* in 15% SDS–PAGE gels

130 Trx h2 were examined by protein staining in 15% SDS–PAGE (sodium
131 dodecylsulfate–polyacrylamide gel electrophoresis) gels (Huang et al., 2004c).
132 Twenty microliter samples were mixed with 25 μL sample buffer containing 60 mM

133	Tris buffer (pH 6.8), 2% SDS, 25% glycerol and 0.1% bromothymol blue, with
134	2-mercaptoethanol (2-ME) in a final concentration of 14.4 mM, and heated at 100°C
135	for 5 min for protein staining. Coomassie brilliant blue G-250 was used for protein
136	staining

138 MDA reductase activity staining in 15% SDS–PAGE gels

139	Trx $h2$ were examined for MDA reductase by activity stainings in 15%
140	SDS–PAGE gels. Diaphorase activity staining for MDA reductase activity of Trx $h2$
141	was according to the methods of Kaplan and Beutler (Kaplan and Beutler, 1967) in a
142	15% SDS-PAGE gel. After electrophoresis, the gel was washed with 25%
143	isopropanol in 10 mM Tris buffer (pH 7.9) twice to remove SDS before activity
144	staining.

145

146Statistical Analysis. Means of triplicate were calculated. Student's t test was used for147comparison between two treatments. A difference was considered to be statistically148significant when p < 0.05.

150 RESULTS

151 Effect of pH (6.0 and 7.0) on dehydroascorbate reductase activity of thioredoxin
152 h2.

To express sweet potato Trx h2 in *E. coli*, the coding sequence of Trx h2 was subcloned in a pQE-32 expression vector so that sweet potato thioredoxin *h* was produced with a 6x His-tag at the N-terminus. SDS-PAGE analysis of crude extracts from transformed *E. coli* (M15) showed a high level of a polypeptide with the expected molecular mass (ca. 14 kDa). The expressed protein was purified from crude extracts by Ni²⁺-chelate affinity chromatography, which yielded highly purified His-tagged thiredoxin *h* (Huang et al., 2004b).

160 The purified Trx h2 samples were used to examine DHA reductase activity. Fig. 1 161 shows AsA regeneration (ΔA 265nm) from DHA at both pH 6.0 and 7.0 with (A) or without (B) glutathione. Fig. 1A shows that Trx h^2 exhibited DHA reductase activity 162 and could reduce DHA back to AsA. The specific activities of DHA reductase for Trx 163 164 h2 in the presence of glutathione were 7.17 and 35.91 nmol AsA produced/min/mg 165 protein at pH 6.0 and 7.0, respectively. However, in the absence of glutathione, very low DHA reductase activities of Trx h2 were found (Fig. 1B): only 0.01 and 0.68 166 167 nmol AsA produced/min/mg protein at pH 6 and 7.0, respectively. Trx h2 acts as a

168	GSH-dependent DHA reductase (Fig. 2), and the rate of reduction was closely
169	proportional to the concentration of GSH. There was either a significant increase in
170	the DHA activity treated with 1, 2, 4 and 4 μ M GSH ($p < 0.05$). It was reported that
171	thioredoxin m and thioredoxin f from spinach chloroplast and thioredoxin from
172	Escherichia coli exhibit very low DHA reductase activities without glutathione [29].
173	
174	Effect of pH (6.0 and 7.0) on monodehydroascorbate reductase activity of
175	thioredoxin <i>h</i> .
176	MDA was reduced to AsA in coupling with NADH oxidation (Δ A340nm) at pH 6.0
177	and 7.0 when Trx h^2 were used as MDA reductase. Trx h^2 exhibited MDA reductase
178	activity at pH 6.0 and 7.0 (Fig. 3), with higher activity at pH 6.0 than pH 7.0 in our
179	assay system. Trx h^2 acts as a GSH-dependent MDA reductase (Fig. 3), and the rate
180	of reduction was closely proportional to the concentration of GSH.
181	
182	Protein and diaphorase activity stainings in 15% SDS-PAGE gels for detection
183	of monodehydroascorbate reductase activity of thioredoxin <i>h</i> .
184	MDA reductase activity staining of Trx h^2 was done for diaphorase activity

185 (Kaplan and Beutler, 1967) on SDS-PAGE gels (Fig. 4). Comparing Fig 5 (A)

186	(protein staining) with $4(B)$ of Trx $h2$ one can see that the diaphorase activity staining
187	for MDA reductase activity came from 14 kD Trx h2. MDA reductase and DHA
188	reductase were shown to contain free thiol groups in their catalytic sites (Borraccino rt
189	al., 1989). When AsA is the sole hydrogen donor, the AsA peroxidase, guaiacol
190	peroxidase, and AsA oxidase can produce MDA (Kaplan and Beutler, 1967).
191	Nonenzymatic oxidations of AsA also produce MDA when cells were under oxidative
192	stress (Hossain et al., 1984). Dimerization of heat shock protein 25 via S-S bond
193	formation can occur in cells in response to various oxidative stresses (Zavialov et al.,
194	1998).

196 **DISCUSSION**

197 This is the first report showing that TRX *h*2 displays both DHA reductase and198 MDA reductase activities with some unique characteristics.

199 In many physiological studies DHA reductase is regarded as one of the chloroplast

200 enzymes involved in the protection against oxidative stress. A specific DHA reductase

- 201 is frequently demanded as part of the enzymatic equipment to avoid oxidative stress.
- 202 In plant extracts a glutathione-dependent DHA reductase activity has been observed
- 203 (Hossain etal., 1984) which will recycle DHA to ascorbate. An increase of DHA

reductase activity and an accumulation of DHA have been frequently implied as
biochemical indicators of oxidative stress in plant metabolism (Wise, 1995) but a
characterization of DHA reductase has remained elusive because of rapid loss of
enzyme activity.

208 The thioredoxin system is vital for chloroplast metabolism because redox control 209 of at least 12 different enzymes is achieved by the reductive cleavage of regulatory 210 disulfide bridges in these target enzymes (Buchanan, 1991). Trx h2 thiol-disulfide 211 interchanges were found during DHA reduction to regenerate AsA. Thionin was 212 reported to have intermolecular disulfide linkages with other proteins (Pinerio et al., 213 1995). Thiol groups are central to most redox-sensitive processes in the cell, and their 214 redox state controls cellular processes such as growth, differentiation, and apoptosis. 215 The intracellular thiol homeostasis is maintained by the thioredoxin systems, which 216 utilize reducing equivalents from NADPH to reduce both protein and low molecular 217 weight disulfides.

MDA reductase purified from potato was shown to contain thiol groups in their catalytic sites (Leonardis et al., 1995). Fernando et al., (1992) found that thioredoxin can act as a radical scavenger and facilitate the regeneration of oxidatively damaged proteins and TRX h^2 might contribute to its antioxidant activities against hydroxyl and peroxyl radicals (Huang et al., 2004b). When AsA is the sole hydrogen donor, the

223	AsA oxidase can produce MDA (Yamazaki and Pette, 1961). Nonenzymatic
224	oxidations of AsA also produce MDA when cells suffer from oxidative stress (Heber
225	et al., 1996). Taking the above results into consideration, we construct a reduction
226	scheme of both dehydroascorbate (DHA) and monodehydroascorbate (MDA) to
227	ascorbate (AsA) catalyzed by Trx $h2$ of sweet potato roots. DHA and MDA can be
228	reduced to regenerate AsA by Trx h^2 in order to prevent oxidative damage to cytosols
229	of sweet potato roots.
230	
231	Acknowledgment
232	The authors want to thank the China Medical University for the financial support
233	(CMU95-211).
234	
235	References:

Balmer, Y. B. B. Buchanan. 2002. Yet another plant thioredoxin. Trends Plant Sci. 7:

237 191-193.

238 Borraccino, G. S. Dipierro, O. Arrigoni. 1986. Purification and properties of ascorbate

free-radical reductase from potato tubers. Planta **167**: 521–526.

240 Borraccino, G. S. Dipierro, O. Arrigoni. 1989. Interaction of ascorbate free radical

241	reductase with sulphhydryl reagents, Phytochemistry 28: 715–717.
242	Brugidou, C. I. Marty, Y. Chartier, Y. Meyer. 1993. The Nicotiana tabacum genome
243	encodes two cytoplasmic thioredoxin genes which are differently expressed.
244	Mol. Gen. Genet. 238: 285-293.
245	Buchanan, B.B. 1991. Regulation of CO ₂ assimilation in oxygenic photosynthesis:
246	The ferredoxin/thioredoxin system. Perspective on its discovery, present status and
247	future development. Arch. Biochem. Biophys. 288: 1-9.
248	Dalton, D.A. S.A. Russell, F.J. Hanus, G.A. Pascoe, H.J. Evans. 1986. Enzymatic
249	reactions of ascorbate and glutathione that prevent peroxide damage in soybean
250	root nodules. Proc. Natl. Acad. Sci. USA 83: 3811–3815.
251	Dalton, D.A. L.M. Baird, L. Langeberg, C.Y. Taugher, W.R. Anyan, C.P. Vance G.
252	Sarath. 1993. Subcellular location of oxygen defense enzymes in soybean
253	(Glycine max [L.] Merr.) root nodules. Plant Physiol. 102: 481–489.
254	Elia, M.R. G. Borraccino, S. Dipierro. 1992. Soluble ascorbate peroxidase from potato
255	tubers. Plant Sci. 85: 17–21.
256	Fernando, M.R. H. Nanri, S. Yoshitake, K. Nagatakuno, S. Minakami. 1992.
257	Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial

258 cell. Eur. J. Biochem. **209:** 917-922.

259	Florencio, F.J. B.C. Yee, T.C. Johnson, B.B. Buchanan. 1988. An NADP/thioredoxin
260	system in leaves: purification and characterization of NADP-thioredoxin
261	reductase and thioredoxin h from spinach. Arch. Biochem. Biophys. 26:
262	496-507.
263	Gautier, M.F. V. Lullien-Pellerin, F. Lamotte-Guery, A. de Guirao, P. Joudrier. 1998.
264	Characterization of wheat thioredoxin h cDNA and production of an active
265	Triticum aestivum protein in Escherichia coli. Eur. J. Biochem. 252: 314-324.
266	Heber, U. C. Miyake, J. Mano, C. Ohno, K. Asada. 1996. Monodehydroascorbate
267	radical detected by electron paramagnetic resonance spectrometry is a sensitive
268	probe of oxidative stress in intact leaves. Plant Cell Physiol. 37: 1066–1072.
269	Holmgren, A. 1985. Thioredoxin. Annu. Rev. Biochem. 54: 237-271.
270	Hossain, M.A. Y. Nakano, K. Asada. 1984. Monodehydroascorbate reductase in
271	spinach chloroplasts and its participation in regeneration of ascorbate for
272	scavenging hydrogen peroxide. Plant Cell Physiol. 25: 385–395.
273	Huang, D.J. H.J. Chen, W.C. Hou, Y.H. Lin. 2004a. Isolation and characterization of
274	thioredoxin h cDNA from sweet potato (Ipomoea batatas [L.] Lam. 'Tainong 57')
275	storage roots. Plant Sci. 166: 515-523.

276	Huang, D.J. H.J. Chen, W.C. Hou, C.D. Lin, Y.H. Lin. 2004b. Active recombinant
277	thioredoxin h protein with antioxidant activities from sweet potato (Ipomoea
278	batatas [L.] Lam. 'Tainong 57') storage roots. J. Agri. Food Chem. 52:
279	4720-4724.

- Huang, D.J. H.J.Chen, W.C. Hou, T.E. Chen, Y.H. Lin. 2004c. In vitro reduction of
 trypsin inhibitor by purified NADPH/ Thioredoxin system from sprouts of sweet
 potato (*Ipomoea batatas* (L) Lam.) storage roots. Plant Sci. 166: 435-441.
- Jimenez, A. J.A. Hernandez, L.A. del Rio, F. Sevilla. 1997. Evidence for the presence
 of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves.
 Plant Physiol. 114: 275–284.
- Johnson, T.C. K. Wada, B.B. Buchanan. 1987 A. Holmgren, Reduction of purothionin
- by the wheat seed thioredoxin system. Plant Physiol. **85**: 446-451.
- Kaplan, J.C. E. Beutler. 1967. Electrophoresis of red cell NADH- and
 NADPH-diaphorases in normal subjects and patients with congenital
 methemoglobinemia, Biochem. Biophys. Res. Commun. 29: 605–610.

291	Kenji, M. C. Finnie, O. Ø stergarrrd, B. Svensson. 2003. Identification, cloning and
292	characterization of two thioredoxin h isoforms, HvTrxh1 and HvTrxh2, from the
293	barley seed proteome. Eur. J. Biochem. 270: 2633-2643.
294	Kobayashi, K. S. Tagawa, S. Sano K. Asada. 1995. A direct demonstration of the
295	catalytic action of monodehydroascorbate reductase by pulse radiolysis. J. Biol.
296	Chem. 270 : 27551–27554.
297	Leonardis, S.D. G.D. Lorenzo, G. Borraccino, S. Dipierro. 1995. A specific ascorbate
298	free radical reductase isozyme participates in the regeneration of ascorbate for
299	scavenging toxic oxygen species in potato tuber mitochondria. Plant Physiol. 109:
300	847–851.
301	Lunde, C. U. Baumann , N.J. Shirley , D.P. Drew, G.B. Fincher. 2006. Gene structure
302	and expression pattern analysis of three monodehydroascorbate reductase (Mdhar)
303	genes in Physcomitrella patens: implications for the evolution of the MDHAR
304	family in plants. Plant Mol. Biol. 60(2): 259-75.
305	Marty, I. Y. Meyer. 1991. Nucleotide sequence of a cDNA encoding a tobacco

306 thioredoxin. Plant Mol. Biol. **17:** 143-147.

307 Mestres-Ortega, D. Y. Meyer. 1999. The Arabidopsis thaliana genome encodes at least

308	four thioredoxins m and a new prokaryotic-like thioredoxin. Gene 240: 307-316.
309	Meyer, Y. F. Vignols, J.P. Reichheld. 2002. Classification of plant thioredoxins by
310	sequence similarity and intron position. Methods Enzymol. 347: 394-402.
311	Laloi, C. N. Rayapuram, Y. Chartier, J.M. Grienenberger, G. Bonnard, Y. Meyer. 2001.
312	Identification and characterization of mitochondrial thioredoxin system in plants.
313	Proc. Natl. Acad. Sci. U S A. 98: 14144-14149.
314	Pinerio, M. I. Diaz, P. Rodriguez-Palenzuela, E. Titarenko, F. Garcia-Olmedo. 1995.
315	Selective disulphide linkage of plant thionins with other proteins. FEBS Lett.
316	369: 239-242.
317	Rivera-Madrid, R. P. Marinho, C. Brugidou, Y. Chartier, Y. Meyer. 1993. Nucleotide
318	sequence of a cDNA clone encoding an arabidopsis thaliana thioredoxin h.
319	Plant Physiol. 102: 327-328.
320	Rivera-Madrid, R. D. Mestres, P. Marinho, J.P. Jacquot, P. Decottignies, M.
321	Miginiac-Maslow, Y. Meyer. 1995. Evidence for five divergent thioredoxin h
322	sequences in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 92:
323	5620-5624.
324	Serrato, A.J. J.L. Crespo, F.J. Florencio, J.C. Francisco. 2001. Characterization of
325	two thioredoxins h with predominant localization in the nucleus of alcurone and

scutellum cells of germinating wheat seeds. Plant Mol. Biol. **46:** 361-371.

327	Tru"mper, S. H. Follmann, I. Ha"berlein. 1994. A novel dehydroascorbate reductase
328	from spinach chloroplasts homologous to plant trypsin inhibitor, FEBS Lett. 352:
329	159–162.
330	Vianey-Liaud, N. K. Kobrehel, Y. Sauvaire, J.H. Wong, B. B. Buchanan. 1994.
331	Lipoic acid in wheat grains. J. Agric. Food Chem. 42: 1110-1114.
332	Wise, R.R. 1995. Chilling-enhanced photooxidation: The production, action and study
333	of reactive oxygen species produced during chilling in the light. Photosynthesis
334	Res. 45: 79-97
335	Yamazaki, I. L.H. Pette. 1961. Mechanism of free radical formation and
336	disappearance during the ascorbic acid oxidase and peroxidase reactions,
337	Biochem. Biophys. Acta 50: 62-69.
338	Zavialov, A.V. M. Gaestel, T. Korpela, V.P. Zav'yalov. 1998. Thiol:disulfide
339	exchange between small heat shock protein 25 and glutathione, Biochem.
340	Biophys. Acta 1388: 123–132.
341	
342	

344 甘藷塊根中硫氧化還原蛋白 / 具有去氫抗壞血酸還原酶和單去氫抗

- 345 壞血酸還原酶的活性
- 346 黄冠中¹陳顯榮²張永勳¹許明志³林耀輝⁴
- 347 「中國醫藥大學中國藥學研究所
- 348 ²中山大學生命科學系
- 349 ³中國醫藥大學醫學系生理科
- 350 ⁴中央研究院植物暨微生物研究所
- 351 在大腸桿菌(M15)中大量表現重組蛋白質硫氧化還原蛋白 h2 (Trx h2),利用鎳

352 離子螯合之親和性管柱純化。 Trx h2 經 SDS-PAGE 分析其分子量約為 1.4 kDa.

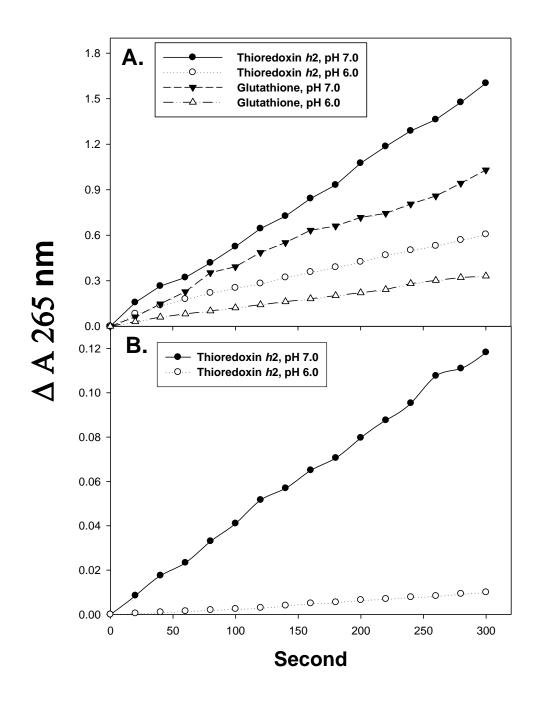
353 由於 Trx h2 具有抗氧化活性。Trx h2 在含有穀胱甘肽時,去氫抗壞血酸

- 354 (dehydroascorbate, DHA)含量會降低而生成抗壞血酸(ascorbate, AsA)。但是,
- 355 在不含有穀胱甘肽時, Trx h2 只有非常低 DHA reductase 活性。AsA 經由 AsA 氧

356 化酶氧化生成單去氫抗壞血酸(monodehydroascorbate, MDA) 自由基。MDA 也可

- 357 經由 Trx h2 而降低了 AsA 生成, 在 NADH 存在時模仿 MDA reductase 催化反
- 358 應。這結果建議, Trx h2 同時具有去氫抗壞血酸還原酶和單去氫抗壞血酸還原
- 359 酶的活性。

360 關鍵詞:甘藷塊根;硫氧化還原蛋白 h;去氫抗壞血酸還原酶;單去氫抗壞血
 361 酸還原酶;


362 Figure Legends

363	Figure. 1. Effect of pH (6.0 and 7.0) on dehydroascorbate reductase activity. Purified
364	recombinant protein of thioredoxin h^2 was with (A) or without (B) 4 mM
365	glutathione in the reaction mixtures. The reaction was carried out at 30°C by
366	adding 100 μ L thioredoxin <i>h</i> 2 solution (100 μ g protein, 100 mM phosphate
367	buffer, pH 7.0 and 6.0) to 0.9 ml DHA solution with or without 4 mM
368	glutathione. Glutathione was used to be a control. The increase of absorbance
369	at 265 nm was recorded for 5 min.
370	
371	Figure. 2. Dependence of dehydroascorbate reductase activity of thioredoxin $h2$ on
372	GSH concentration. The reaction was carried out at 30°C by adding 100 μ L
373	thioredoxin h^2 solution (100 µg protein, 100 mM phosphate buffer, pH 7.0) to
374	0.9 ml DHA solution with different concentrations of glutathione. The increase
375	of absorbance at 265 nm was recorded for 5 min.
376	
377	Figure. 3. Effect of pH (6.0 and 7.0) on monodehydroascorbate reductase activity of
378	thioredoxin $h2$. The reaction mixtures contained 50 mM phosphate buffer (pH
379	6.0 and 7.0), 0.33 mM NADH, 3 mM AsA, AsA oxidase (0.9 U), and 200 μL
380	thioredoxin h^2 solution (200 µg protein) in a final volume of 1 ml.

381 Thioredoxin *h*2 solution was replaced with gluthioione for controls.

383	Figure. 4. Protein (A) and diaphorase activity (B) stainings in 15% SDS-PAGE gels
384	for detection of monodehydroascorbate reductase activity of thiored xin $h2$.
385	The experiments were done twice and a representative one is shown. 'M'
386	represents the molecular weight marker and 10 μ g protein was loaded in each
387	well.
388	
389	
390	
391	
392	
393	
394	
395	
396	
397	
398	
399	
400	

Figure. 1.

Figure. 2.

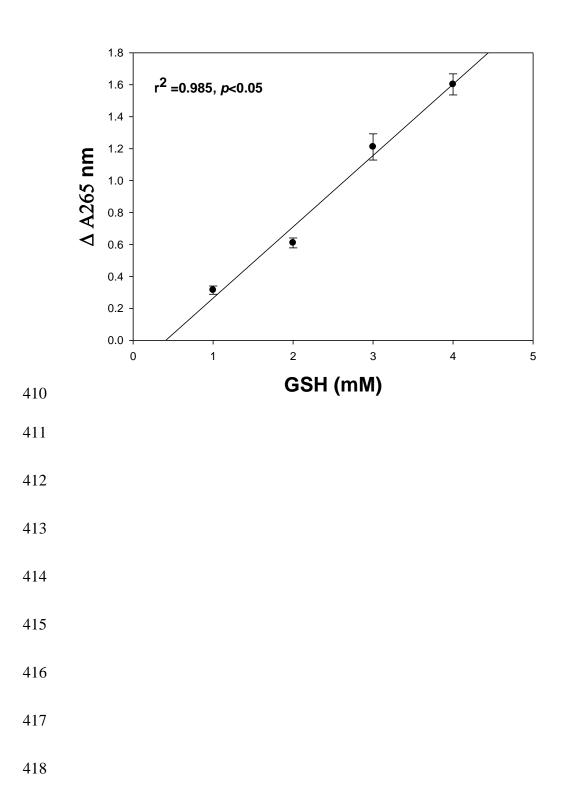
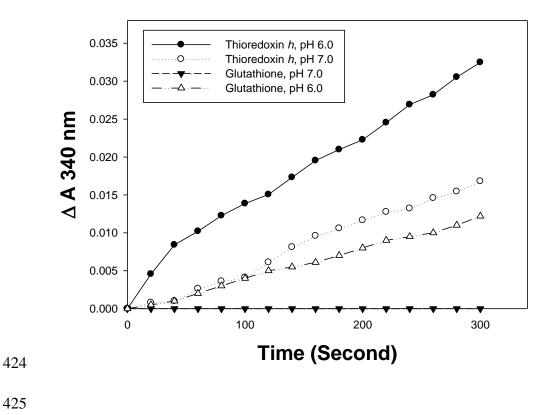



Figure. 3.

Figure. 4.

